Abstract

We have investigated the effect of biaxial constraint during glutaraldehyde crosslinking on the equibiaxial mechanical properties of bovine pericardium. Crosslinking of cruciate samples was carried out with: (i) no applied load, (ii) an initial 25 g (∼30 kPa) equibiaxial load, or (iii) an initial 200 g (∼250 kPa) equibiaxial load. All loading during crosslinking was done under a defined initial equibiaxial load and subsequently fixed biaxial strain. Load changes during crosslinking were monitored. Mechanical testing and constraint during crosslinking were carried out in a custom-built biaxial servo-hydraulic testing system incorporating four actuators with phase-controlled waveform synthesis, high frame-rate video dimension analysis, and computer-interfaced data acquisition. The paired biaxial stress–strain responses under equibiaxial loading at 1 Hz (before and after treatment) were evaluated for changes in anisotropic extensibility by calculation of an anisotropy index. Scanning electron microscopy (SEM) was performed on freeze-fractured samples to relate collagen crimp morphology to constraint during crosslinking. Fresh tissue was markedly anisotropic with the base-to-apex direction of the pericardium being less extensible and stiffer than the circumferential direction. After unconstrained crosslinking, the extensibility in the circumferential direction, the stiffness in the base-to-apex direction, and the tissue’s anisotropy were all reduced. Anisotropy was preserved in the tissue treated with an applied 25 g load; however, tissue treated with an applied 200 g load became extremely stiff and nearly isotropic. SEM micrographs correlated well with observed extensibility in that the collagen fibre morphology changed from very crimped (unconstrained crosslinking), to straight (200 g applied load). Biaxial stress-fixation may allow engineering of bioprosthetic materials for specific medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.