Abstract
Uniform distribution of bias-enhanced nucleation of diamond has been improved on Si substrate of an area of 1 × 1 cm 2 by using a dome-shaped Mo counter electrode in a microwave plasma chemical vapor deposition reactor. A nucleation density of 10 9 cm 2 can be reached within a few minutes when the bias voltage of − 100 V is applied on the substrates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that a single-crystalline diamond in a few nanometered size can be deposited on a volcano-shaped cubic SiC which is epitaxially formed on a Si cone. Examination reveals a large fraction of diamond nuclei are oriented along with one side of SiC on each Si cone. The Si cone formed on the Si substrate is due to plasma etching. The diamond nuclei have a shape close to rhombus in TEM. With further growth, secondary nucleation of diamond occurs on top of diamond nuclei and SiC which grows with Si cones. As a result, polycrystalline diamonds are deposited on each Si cone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.