Abstract

BackgroundThree‐dimensional variable flip angle (VFA) methods are commonly used for T1 mapping of the liver, but there is no data on the accuracy, repeatability, and reproducibility of this technique in this organ in a multivendor setting.PurposeTo measure bias, repeatability, and reproducibility of VFA T1 mapping in the liver.Study TypeProspective observational.PopulationEight healthy volunteers, four women, with no known liver disease.Field Strength/Sequence1.5‐T and 3.0‐T; three‐dimensional steady‐state spoiled gradient echo with VFAs; Look‐Locker.AssessmentTraveling volunteers were scanned twice each (30 minutes to 3 months apart) on six MRI scanners from three vendors (GE Healthcare, Philips Medical Systems, and Siemens Healthineers) at two field strengths. The maximum period between the first and last scans among all volunteers was 9 months. Volunteers were instructed to abstain from alcohol intake for at least 72 hours prior to each scan and avoid high cholesterol foods on the day of the scan.Statistical TestsRepeated measures ANOVA, Student t‐test, Levene's test of variances, and 95% significance level. The percent error relative to literature liver T1 in healthy volunteers was used to assess bias. The relative error (RE) due to intrascanner and interscanner variation in T1 measurements was used to assess repeatability and reproducibility.ResultsThe 95% confidence interval (CI) on the mean bias and mean repeatability RE of VFA T1 in the healthy liver was 34 ± 6% and 10 ± 3%, respectively. The 95% CI on the mean reproducibility RE at 1.5 T and 3.0 T was 29 ± 7% and 25 ± 4%, respectively.Data ConclusionBias, repeatability, and reproducibility of VFA T1 mapping in the liver in a multivendor setting are similar to those reported for breast, prostate, and brain.Level of Evidence1Technical Efficacy Stage1

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.