Abstract
The rise of text generation models, especially those powered by advanced deep learning architectures like Open AI’s GPT-3, has unquestionably transformed various natural language processing applications. However, these models have recently faced examination due to their inherent biases, often evident in the generated text. This paper critically examines the issue of bias in text generation models, exploring the challenges posed, the ethical implications it entails, and the potential strategies to mitigate bias. Firstly, we go through the causes of the origin of the bias, ways to minimize it, and mathematical representation of Bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indian Journal of Artificial Intelligence and Neural Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.