Abstract

BackgroundAlzheimer’s disease (AD) is a primary cause of dementia in ageing population affecting more than 35 million people around the globe. It is a chronic neurodegenerative disease caused by defected folding and aggregation of amyloid beta (Aβ) protein. Aβ is formed by the cleavage of membrane embedded amyloid precursor protein (APP) by using enzyme ‘transmembrane aspartyl protease, β-secretase’. Inhibition of β-secretase is a viable strategy to prevent neurotoxicity in AD. Another strategy in the treatment of AD is inhibition of acetylcholinesterase. This inhibition reduces the degradation of acetylcholine and temporarily restores the cholinergic function of neurons and improves cognitive function. Monoamine oxidase and higher glutamate levels are also found to be linked with Aβ peptide related oxidative stress. Oxidative stress leads to reduced activity of glutamate synthase resulting in significantly higher level of glutamate in brain. The aim of this study is to perform in silico screening of a virtual library of biaryl scaffold containing compounds potentially used for the treatment of AD. Screening was done against the primary targets of AD therapeutics, acetylcholinesterase, β-secretase (BACE1), Monoamine oxidases (MAO) and N-Methyl-D-aspartate (NMDA) receptor. Compounds were screened for their inhibitory potential by employing molecular docking approach using AutoDock vina. Binding energy scores were embodied in the heatmap to display varies strengths of interactions of the ligands targeting AD.ResultsSeveral ligands showed notable interaction with at least two targets, but the strong interaction with all the targets is shown by very few ligands. The pharmacokinetics of the interacting ligands was also predicted. The interacting ligands have good drug-likeness and brain availability essential for drugs with intracranial targets.ConclusionThese results suggest that biaryl scaffold may be pliable to drug development for neuroprotection in AD and that the synthesis of further analogues to optimize these properties should be considered.

Highlights

  • Alzheimer’s disease (AD) is a primary cause of dementia in ageing population affecting more than 35 million people around the globe

  • The acetylcholine-releasing neurons especially there cell bodies which lied in basal forebrain degrades selectively in AD affecting cognitive functions and memory as these neurons are vital in the normal functioning of cerebral cortex and related structures

  • Preparation of protein targets The target proteins i.e. AChE (4EY7) [17], BACE-1 (2HM1) [18], Monoamine oxidases (MAO)-A (2Z5X) [19] and NMDA (1PBQ) [20] were selected. These X-ray crystallographic structures were downloaded from protein data bank (PDB)

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a primary cause of dementia in ageing population affecting more than 35 million people around the globe. It is a chronic neurodegenerative disease caused by defected folding and aggregation of amyloid beta (Aβ) protein. Inhibition of β-secretase is a viable strategy to prevent neurotoxicity in AD Another strategy in the treatment of AD is inhibition of acetylcholinesterase. This inhibition reduces the degradation of acetylcholine and temporarily restores the cholinergic function of neurons and improves cognitive function. Screening was done against the primary targets of AD therapeutics, acetylcholinesterase, β-secretase (BACE1), Monoamine oxidases (MAO) and N-Methyl-D-aspartate (NMDA) receptor. The effect of these AChE-I is modest and transient due to up-regulation of AChE activity following chronic AChE-I therapy [9]

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.