Abstract

Contact manifolds are odd-dimensional smooth manifolds endowed with a maximally non-integrable field of hyperplanes. They are intimately related to symplectic manifolds, i.e. even-dimensional smooth manifolds endowed with a closed non-degenerate 2-form. Although in symplectic topology a famous bi-invariant metric, the Hofer metric, has been studied since more than 20 years ago, it is only recently that some somehow analogous bi-invariant metrics have been discovered on the group of diffeomorphisms that preserve a contact structure. In this expository article I will review some constructions of bi-invariant metrics on the contactomorphism group, and how these metrics are related to some other global rigidity phenomena in contact topology which have been discovered in the last few years, in particular the notion of orderability (due to Eliashberg and Polterovich) and an analogue in contact topology (due to Eliashberg, Kim and Poltorovich) of Gromov's symplectic non-squeezing theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.