Abstract
Abstract In the fast developing world of today, automatic generation control (AGC) plays an incredibly significant role in offering inevident demand of good quality power supply in power system. To deliver a quality power, AGC system requires an efficient and intelligent control algorithm. Hence, in this paper, a novel fractional order fuzzy proportional-integral-derivative (FOFPID) controller is proposed for AGC of electric power generating systems. The proposed controller is tested for the first time on three structures of multi-area multi-source AGC system. The gains and fractional order parameters such as order of integrator (λ) and differentiator (µ and γ) of FOFPID controller are optimized using bacterial foraging optimization algorithm (BFOA). Initially, the proposed controller is implemented on a traditional two-area multi-source hydrothermal power system and its effectiveness is established by comparing the results with FOPID, fuzzy PID (FPID) and PI/PID controller based on recently published optimization techniques like hybrid firefly algorithm-pattern search (hFA-PS) and grey wolf optimization (GWO) algorithm. The approach is further extended to restructured multi-source hydrothermal and thermal gas systems. It is observed that the dynamic performance of the proposed BFOA optimized FOFPID controller is superior to BFOA optimized FPID/FOPID/PID and differential evolution (DE)/genetic algorithm (GA) optimized PID controllers. It is also detected that the dynamic responses obtained under different power transactions with/without appropriate generation rate constraint, time delay and governor dead-zone effectively satisfy the AGC requirement in deregulated environment. Moreover, robustness of the suggested approach is verified against wide variations in the nominal initial loading, system parameters, distribution company participation matrix structure and size and position of uncontracted power demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.