Abstract

Although numerous Kunitz-type toxins were isolated from snake venom, no bifunctional Kunitz-type snake toxins with protease and potassium channel inhibiting properties have been reported till now. With the help of bioinformatics analyses and biological experiments, we characterized Kunitz-type snake toxin BF9 as a bifunctional peptide. Enzyme and inhibitor reaction kinetics experiments showed that BF9 inhibited α-chymotrypsin with Ki value of 1.8 × 10⁻⁸ M. Electrophysiological experiments showed that BF9 inhibited the Kv1.3 potassium channel with an IC₅₀ of 120.0 nM, which demonstrated that serine protease inhibitor BF9 could also inhibit potassium channels. In addition, the key amino acids of BF9 responsible for the unique bifunctional mechanism are further investigated. To the best of our knowledge, BF9 is the first Kunitz-type snake peptide with the unique bifunctionality of potassium channel and serine protease inhibiting properties, providing novel insights into divergent evolution and functional applications of snake Kunitz-type peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.