Abstract

Electron scattering provides a powerful tool to determine charge distributions and transition densities of nuclei. This tool will soon be available for short-lived neutron-rich nuclei. [Purpose] Beyond mean-field methods have been successfully applied to the study of excitation spectra of nuclei in the whole nuclear chart. These methods permit to determine energies and transition probabilities starting from an effective in-medium nucleon-nucleon interaction but without other phenomenological ingredients. Such a method has recently been extended to calculate the charge density of nuclei deformed at the mean-field level of approximation [J. M. Yao et al., Phys. Rev. C86, 014310 (2012)]. The aim of this work is to further extend the method to the determination of transition densities between low-lying excited states. [Method] The starting point of our method is a set of Hartree-Fock-Bogoliubov wave functions generated with a constraint on the axial quadrupole moment and using a Skyrme energy density functional. Correlations beyond the mean field are introduced by projecting mean-field wave functions on angular-momentum and particle number and by mixing the symmetry restored wave functions.[Results] We give in this paper detailed formulae derived for the calculation of densities and form factors. These formulae are rather easy to obtain when both initial and final states are $0^+$ states but are far from being trivial when one of the states has a finite $J$-value. Illustrative applications to $^{24}$Mg and to the even-mass $^{58-68}$Ni have permitted to analyse the main features of our method, in particular the effect of deformation on densities and form factors. An illustration calculation of both elastic and inelastic scattering form factors is presented....

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.