Abstract
Identifying similar network structures is key to capturing graph isomorphisms and learning representations that exploit structural information encoded in graph data. This work shows that ego networks can produce a structural encoding scheme for arbitrary graphs with greater expressivity than the Weisfeiler–Lehman (1-WL) test. We introduce IGEL, a preprocessing step to produce features that augment node representations by encoding ego networks into sparse vectors that enrich message passing (MP) graph neural networks (GNNs) beyond 1-WL expressivity. We formally describe the relation between IGEL and 1-WL, and characterize its expressive power and limitations. Experiments show that IGEL matches the empirical expressivity of state-of-the-art methods on isomorphism detection while improving performance on nine GNN architectures and six graph machine learning tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.