Abstract

Fully convolutional neural network (FCN) has been dominating the game of face detection task for a few years with its congenital capability of sliding-window-searching with shared kernels, which boiled down all the redundant calculation, and most recent state-of-the-art methods such as Faster-RCNN, SSD, YOLO and FPN use FCN as their backbone. So here comes one question: Can we find a universal strategy to further accelerate FCN with higher accuracy, so could accelerate all the recent FCN-based methods? To analyze this, we decompose the face searching space into two orthogonal directions, 'scale' and 'spatial'. Only a few coordinates in the space expanded by the two base vectors indicate foreground. So if FCN could ignore most of the other points, the searching space and false alarm should be significantly boiled down. Based on this philosophy, a novel method named scale estimation and spatial attention proposal (S2AP) is proposed to pay attention to some specific scales in image pyramid and valid locations in each scales layer. Furthermore, we adopt a masked-convolution operation based on the attention result to accelerate FCN calculation. Experiments show that FCN-based method RPN can be accelerated by about 4A— with the help of S2AP and masked-FCN and at the same time it can also achieve the state-of-the-art on FDDB, AFW and MALF face detection benchmarks as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.