Abstract

Person search is a time-consuming computer vision task that entails locating and recognizing query people in scenic pictures. Body components are commonly mismatched during matching due to position variation, occlusions, and partially absent body parts, resulting in unsatisfactory person search results. Existing approaches for extracting local characteristics of the human body using keypoint information are unable to handle the search job when distinct body parts are misaligned, ignoring to exploit multiple granularities, which is crucial in the person search process. Moreover, the alignment learning methods learn body part features with fixed and equal weights, ignoring the beneficial contextual information, e.g., the umbrella carried by the pedestrian, which supplements compelling clues for identifying the person. In this paper, we propose a Coarse-to-Fine Adaptive Alignment Representation (CFA 2 R) network for learning multiple granular features in misaligned person search in the coarse-to-fine perspective. To exploit more beneficial body parts and related context of the cropped pedestrians, we design a Part-Attentional Progressive Module (PAPM) to guide the network to focus on informative body parts and positive accessorial regions. Besides, we propose a Re-weighting Alignment Module (RAM) shedding light on more contributive parts instead of treating them equally. Specifically, adaptive re-weighted but not fixed part features are reconstructed by Re-weighting Reconstruction module, considering that different parts serve unequally during image matching. Extensive experiments conducted on CUHK-SYSU and PRW datasets demonstrate competitive performance of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.