Abstract

Skin aging is associated with a progressive decline in physiological functions, skin cancers and, ultimately, death. It may be categorized as intrinsic or extrinsic, whereby intrinsic aging is attributed to chronological and genetic factors. At the molecular level, skin aging involves changes in protein conformation and function. The skin proteome changes constantly, mainly through carbonylation; an irreversible phenomenon leading to protein accumulation as toxic aggregates that impair cellular physiology and accelerate skin aging. This review details the central role of proteostasis during skin aging and why proteome protection may be a promising approach in mitigating skin aging. A comprehensive literature review of 87 articles focusing on the proteome, proteostasis, proteotoxicity, protein carbonylation, and the impact of the damaged proteome on aging, and in particular skin aging, was conducted. Skin aging is associated with deficiencies in the repair mechanisms of DNA, transcriptional control, mitochondrial function, cell cycle control, apoptosis, cellular metabolism, changes in hormonal levels secondary to toxicity of damaged proteins, and cell-to-cell communication for tissue homeostasis, which are largely controlled by proteins. In this context, a damaged proteome that leads to the loss of proteostasis may be considered as the first step in tissue aging. There is growing evidence that a healthy proteome plays a central role in skin and in maintaining healthy tissues, thus slowing down the process of skin aging. Hence, protecting the proteome against oxidative or other damage may be an appropriate strategy to prevent and delay skin aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.