Abstract

Marc Kirschner graduated in biochemistry from Northwestern University, moving to Berkeley for his doctoral research and with positions at Berkeley, Oxford University and Princeton before he took a professorship at University of California San Francisco where with Andrew Murray he did seminal research on the control of the cell cycle in Xenopus egg extracts that led to the discovery of how cyclin drives the cell cycle, and with Tim Mitchison on the dynamic instability of microtubules. In 1993 he moved to Harvard where in 2003 he became the founding Chair of the HMS Department of Systems Biology and was named the John Franklin Enders University Professor in 2009. The two books he wrote with John Gerhart, Cells, Embryos and Evolution (Blackwell, 1997) and The Plausibility of Life: Resolving Darwin’s Dilemma (Yale University Press, 2005), reflect his deep and longstanding interest in how biological systems evolve. Here he gives his view of the evolution of evolvability and its profound importance for understanding and applying biology. Marc Kirschner

Highlights

  • Marc Kirschner graduated in biochemistry from Northwestern University, moving to Berkeley for his doctoral research and with positions at Berkeley, Oxford University and Princeton before he took a professorship at University of California San Francisco where with Andrew Murray he did seminal research on the control of the cell cycle in Xenopus egg extracts that led to the discovery of how cyclin drives the cell cycle, and with Tim Mitchison on the dynamic instability of microtubules

  • If there is something like evolvability, that would mean that systems are constructed in such a way that they generate a lot of phenotypic variation on which selection can act with a given amount, or a minimum amount, of genetic variation

  • The main questions about Darwinian evolution that people have focused on have been genetic questions; but the great doubt about Darwin in the period after The Origin of Species [1] was whether you would ever get a kind of genetic variation on which selection can act to produce a really complex adaptive structure: how likely is it that an eye would develop? It is easy to see that if an eye did develop, one could select for better and better eyes - but the origin of novelty is more challenging

Read more

Summary

Introduction

Marc Kirschner graduated in biochemistry from Northwestern University, moving to Berkeley for his doctoral research and with positions at Berkeley, Oxford University and Princeton before he took a professorship at University of California San Francisco where with Andrew Murray he did seminal research on the control of the cell cycle in Xenopus egg extracts that led to the discovery of how cyclin drives the cell cycle, and with Tim Mitchison on the dynamic instability of microtubules.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.