Abstract

A Computerized Operator Support System (COSS) has been envisioned and prototyped for nuclear power plant (NPP) operations. The COSS supports operator decision making during abnormal events by making use of an online fault-diagnostic system known as PRO-AID. PRO-AID uses existing sensors and confluence equations to detect system faults before plant threshold alarms would alert operators. In a full-scope, full-scale nuclear power plant simulator we demonstrated that early diagnosis in conjunction with computer-based-procedures can assist operators in mitigating faults in circumstances that would normally lead to shutting down the plant. Here we conceive of a computerized plant management system (CPMS) that would complement COSS. COSS is intended to aid in the short-time scale operations of a plant. The CPMS is aimed at supporting longer time-scale activities involving maintenance, calibration, and early warning fault detection. Digitization allows staff to manage and monitor assets remotely without being physically present locally at the equipment under surveillance. This allows for specialization by equipment and systems rather than location. Cyber-physical systems and the industrial internet of things have no shortage of possibilities and promises, but often the benefits come with conflicting considerations: availability may tradeoff with increased cyber risk, increased redundancy may come at the cost of increased complexity, outsourcing engineering requires more communication across organizations and the associated administrative burden. In too many instances, humans tend to fill the gaps between what automation cannot reliably or cost-effectively accomplish. Human-centered design using human factors considers the role of the human as part of a human-machine-system. Our COSS concept examined how a control system, a diagnostic system, expert guidance system, and computer-based procedure system could work in concert to aid operator actions. Here we examine the potential for human factors and human-centered design for whole plant management using a CPMS. A CPMS could serve several valuable functions from providing computerized procedures for field operations to using prognostics for early failure detection, or managing information flows from sensors to business networks, system engineers, cyber-security personnel, and third-party vendors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.