Abstract

Assembly of small clusters into rigid bodies with precise shape and symmetry has been witnessed by the significant advances in cluster-based metal-organic frameworks (MOFs), however, nanosized silver cluster based MOFs remain largely unexplored. Herein, two anion-templated silver clusters, CO3 @Ag20 and SO4 @Ag22 , were ingeniously incorporated into a 2D sql lattice (1, [CO3 @Ag20 (iPrS)10 (NO3 )8 (DMF)2 ]n ) and an unprecedented 3D two-fold interpenetrated dia network (2, [SO4 @Ag22 (iPrS)12 (NO3 )6 ⋅2 NO3 ]n ), respectively, under mild solvothermal conditions. Their atomically precise structures were confirmed by single-crystal X-ray diffraction analysis and further consolidated by IR spectroscopy, thermogravimetric analysis (TGA), and elemental analysis. Each drum-like CO3 @Ag20 cluster is extended by twelve NO3 (-) ions to form the 2D sql lattice of 1, whereas each ball-shaped SO4 @Ag22 cluster with a twisted truncated tetrahedral geometry is pillared by four [Ag6 (NO3 )3 ] triangular prisms to form the 3D interpenetrated dia network of 2. Notably, 2 is the first interpenetrated 3D MOF constructed from silver clusters. These results demonstrate the dual role of the anions, which not only internally act as anion templates to induce the formation of silver thiolate clusters but also externally extend the cluster units into the rigid networks. The photoluminescent and electrochemical properties of 2 are discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.