Abstract

Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways.

Highlights

  • The concentrations of dissolved salt in the environment can vary substantially

  • In this study we investigated the effect of salt stress on the facultative anaerobic Yersinia intermedia strain MASE-LG1 (DSMZ 102845), a microorganism isolated in the framework of the EU MASE (Mars Analogues for Space Exploration) project (Cockell et al, 2017)

  • We aimed at deciphering metabolic modulations to osmotic stress on the intracellular metabolism of Yersinia intermedia MASE-LG-1 that were induced by the two different salts compared to control conditions

Read more

Summary

Introduction

Understanding how microorganisms respond to different salt environments has applications to investigating microorganisms in hypersaline environments on Earth (Kaye and Baross, 2004) with implications for biomedical and biotechnical research and the potential survivability of microorganisms in salty extraterrestrial environments, such as brines on Mars (Carr, 1996; Osterloo et al, 2008; Ojha et al, 2015). In the latter case, research is primarily driven by an interest in determining habitability of extraterrestrial environments and in the fate of terrestrial contaminants transferred to that planet on spacecraft (planetary protection).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.