Abstract

Traumatic brain injury (TBI) causes a high rate of mortality and disability worldwide, and there exists almost none effective drugs to protect against TBI. Neurotoxicity occurring after TBI can be derived from microglia and astrocytes, and causes neuronal death and synapse loss. Bexarotene has been demonstrated to protect neurons in CNS diseases. In the present study, we aimed to investigate the potential role of bexarotene in protecting against neurotoxicity after TBI, as well as the underlying mechanism. The controlled cortical impact (CCI) model was established on adult C57BL/6 mice, followed by intraperitoneal administration of bexarotene for 14 consecutive days. We found that bexarotene improved sensorimotor function and cognitive recovery in CCI mice. In addition, bexarotene decreased neuronal death and synapse loss, as well as inhibited apoptotic cascade. Moreover, bexarotene treatment reduced M1 microglia polarization, microglia-derived pro-inflammatory cytokines, and the number of A1 astrocytes after CCI. These effects of bexarotene were partially abolished by T0070907, an antagonist of peroxisome proliferator–activated receptor gamma (PPARγ). Additionally, bexarotene enhanced nuclear translocation and transcriptional activity of PPARγ. These findings show that bexarotene inhibits neurotoxicity in mice after TBI, at least in part through a PPARγ-dependent mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.