Abstract

AbstractEntrainment and mixing play an essential role in shaping the droplet size distribution (DSD), with commensurate effects on cloud radiative properties or precipitation formation. In this paper, we use a model that considers all relevant scales related to entrainment and mixing by employing the linear eddy model (LEM) as a subgrid‐scale (SGS) mixing model, coupled with a large‐eddy simulation model and a Lagrangian cloud model (LCM) for a single cumulus congestus cloud. We confirm that the DSD is broadened toward small‐size droplets during homogeneous mixing. During inhomogeneous mixing, the DSD width remains almost unchanged. The DSD width can also be narrowed after mixing. We show that this happens when DSD is broadened toward small‐size droplets, which evaporate rapidly, while larger droplets are almost unaffected. In addition, when droplets ascend during mixing, DSD narrowing is caused when the adiabatic increase in supersaturation is slower than the average droplet evaporation, allowing only the largest droplets to benefit from the newly produced supersaturation. The narrowing mixing scenario prevents clouds from having too broad DSDs and causes the DSD relative dispersion to converge around 0.2 to 0.4. As this scenario is more frequent when the LEM SGS model is used, our results indicate that adequately modeling turbulent mixing is necessary to represent a realistic DSD shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.