Abstract

Alcoholic abuse is one of the most serious causes of liver diseases worldwide. Although detailed molecular pathogenesis of alcohol-induced liver damages remains elusive with intensive debates, it has been widely recognized that hepatic damage caused by free radicals generated from alcohol metabolism is one of the most critical factors for alcohol-induced liver diseases. Betulinic acid is a potent antioxidant with additional known pharmacological safety characteristics and minimal toxicity. However, poor solubility limited its usage. In this study, we assessed the efficacy of BAN, a betulinic acid and nucleoside hybrid with good water solubility, in reversing acute liver damages using an established alcohol overdose animal model. The results indicated that BAN is an extremely promising therapeutic agent against acute alcohol-induced liver damage. BAN effectively protects liver from alcohol damage by reducing serum ALT level by up to 47%, as well as liver oxidative stress indicated by significantly increased SOD, CAT, and GSH-Px levels. Moreover, hepatic FXR activation and a corresponding downstream anti-oxidative stress transcriptional cascade including Nrf2, HO-1, and NOQ1 induce the protective role of BAN. On the other hand, BAN administration also leads to increase cellular autophagy response, as indicated by the key ATG protein activation. We concluded that BAN, comparing with Betulinic acid, prevents acute alcohol-induced liver damages more effectively, with the dual mechanisms of neutralizing oxidative stress and promoting autophagy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.