Abstract
Mats Boij and Jonas Soederberg (math.AC/0611081) have conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring can be decomposed in a certain way as a positive linear combination of Betti tables of modules with pure resolutions. We prove, over any field, a strengthened form of their conjecture. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fan naturally associated to the Young lattice. We also characterize the rational cone of all cohomology tables of vector bundles on projective spaces in terms of the cohomology tables of supernatural bundles. This characterization is dual, in a certain sense, to our characterization of Betti tables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.