Abstract

BackgroundPhysical inactivity is a global public health problem, partly due to urbanization and increased use of passive modes of transport such as private motor vehicles. Improving accessibility to public transport could be an effective policy for Governments to promote equity and efficiency within transportation systems, increase population levels of physical activity and reduce the negative externalities of motor vehicle use. Quantitative estimates of the health impacts of improvements to public transport accessibility may be useful for resource allocation and priority-setting, however few studies have been published to inform this decision-making. This paper aims to estimate the physical activity, obesity, injury, health and healthcare cost-saving outcomes of scenario-based improvements to public transport accessibility in Melbourne, Australia.MethodsBaseline and two hypothetical future scenario estimates of improved public transport accessibility for Melbourne, Australia, were derived using a spatial planning and decision tool designed to simulate accessibility performance (the Spatial Network Analysis for Multimodal Urban Transport Systems (SNAMUTS)). Public transport related physical activity was quantified by strata of age group and sex from Melbourne travel survey data (VISTA survey) and used with the SNAMUTS Composite Index to estimate input data for health impact modelling for the Melbourne population aged 20–74 years. A proportional multi-state, multiple cohort lifetable Markov model quantified the potential health gains and healthcare cost-savings from estimated changes in physical activity, body weight and injuries related to walking to access/egress public transport under two scenarios: (S1) public transport accessibility under current policy directions, and (S2) multi-directional, high-frequency network improvements.ResultsMulti-directional, high-frequency improvements to the public transport network (S2) resulted in significantly greater health and economic gains than current policy directions (S1) in relation to physical activity (mean 6.4 more MET minutes/week), body weight (mean 0.05 kg differential), health-adjusted life years gained (absolute difference of 4878 HALYs gained) and healthcare cost-savings (absolute difference of AUD43M), as compared to business as usual under both scenarios (n = 2,832,241 adults, over the lifecourse).ConclusionsBased on our conservative analyses, improving accessibility to public transport will improve population health by facilitating physical activity and lead to healthcare cost savings compared with business-as-usual. These wider health benefits should be better considered in transport planning and policy decisions.

Highlights

  • Physical inactivity is a global public health problem, partly due to urbanization and increased use of passive modes of transport such as private motor vehicles

  • The mean distance walked for combined public transport access/egress decreased with increasing accessibility, from 1.28 km in areas of no-minimum service to 1.09 km in areas of high public transport accessibility (Composite Index > = 25)

  • Improvements to public transport accessibility would lead to a small per capita increase in time spent engaging in physical activity per week (Scenario 1: 1.4 metabolic equivalent task (MET) minutes/week, Scenario 2: 7.8 MET minutes/week) and a small mean decrease in body weight (Scenario 1: − 0.01 kg, Scenario 2: − 0.06 kg)

Read more

Summary

Introduction

Physical inactivity is a global public health problem, partly due to urbanization and increased use of passive modes of transport such as private motor vehicles. Evidence from high-income countries suggests that potential health hazards from a switch from private motor vehicle travel to active modes (e.g. increased risk of transport injury or exposure to pollution) is more than counter-balanced by the health benefits related to increased physical activity [3]. In many countries, including in Australia, transport systems are predominantly motor vehicle-oriented and rates of active transport are low. Of those Australians commuting to work in 2016 79% travelled by private motor vehicle, with only 14% using public transport and 5.2% either walking or cycling [4]. Evidence suggests that public transport users have up to four times greater odds of meeting physical activity recommendations and walk up to 33 min more per day [5, 6] compared to private motor vehicle users

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.