Abstract

Glucan particles (GPs) are spherical hollow particles derived from Saccharomyces cerevisiae cell walls and mainly consist of β-1, 3-D-glucans. The inner hollow cavity of glucan particles can be loaded with different compounds, including protein antigens, and delivered to macrophages and dendritic cells. Moreover, the GP delivery system possesses β-glucan's intrinsic immunostimulatory properties. Therefore, GPs serve as both an antigen-presenting cell-targeted delivery system and an adjuvant.Here, we describe the production of GPs from S. cerevisiae using hot alkaline and solvent extraction and characterization of these particles for morphology, particle density, and hydrodynamic volume. A detailed protocol for loading and entrapping a model antigen, ovalbumin (OVA), into these particles using yeast RNA is presented. Similar methods are used to load pathogen-specific antigens (peptides, proteins, soluble extracts) which then can be tested in in vivo vaccination models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.