Abstract

The β1 integrin subunit contributes to pancreatic beta cell growth and function through communication with the extracellular matrix (ECM). The effects of in vitro and in vivo β1 integrin knockout have been extensively studied in mature islets, yet no study to date has examined how the loss of β1 integrin during specific stages of pancreatic development impacts beta cell maturation. Beta-cell-specific tamoxifen-inducible Cre recombinase (MIP-CreERT) mice were crossed with mice containing floxed Itgb1 (β1 integrin) to create an inducible mouse model (MIPβ1KO) at the second transition stage (e13.5)of pancreas development. By e19.5-20.5, the expression of beta-cell β1 integrin in fetal MIPβ1KO mice was significantly reduced and these mice displayed decreased beta cell mass, density and proliferation. Morphologically, fetal MIPβ1KO pancreata exhibited reduced islet vascularization and nascent endocrine cells in the ductal region. In addition, decreased ERK phosphorylation was observed in fetal MIPβ1KO pancreata. The expression of transcription factors needed for beta-cell development was unchanged in fetal MIPβ1KO pancreata. The findings from this study demonstrate that β1 integrin signaling is required during a transition-specific window in the developing beta-cell to maintain islet mass and vascularization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.