Abstract

In Alzheimer's disease (AD), loss of synapses exceeds neuronal loss and some evidence suggests a role of beta-amyloid protein (Abeta) in synaptic degeneration through a mechanism which may involve intraneuronal Ca2+ dyshomeostasis. Emerging evidence points to the participation of the internal Ca2+ stores in the pathophysiology of neurodegeneration in AD. To test the involvement of intrasynaptic Ca2+ mobilization in A toxicity, we explored the role of ryanodine receptor activation in rat cortical synaptosomes taken as a model system for the central presynapses. Evaluation of synaptosomal mitochondrial redox capacity was assessed by the MTT reduction technique, and ultrastructural changes of synaptosomes after exposure to Abeta and ryanodine were evaluated by electron microscopy. Our results show that Abeta potentiates mitochondrial dysfunction in the presence of ryanodine and induces morphological changes consisting of mitochondrial swelling and intense small synaptic vesicles depletion. These changes were accompanied by a reduction in the content of synaptophysin and actin proteins. The reduction of actin immunoreactivity was reversed in the presence of a wide range caspase inhibitors, suggesting the activation of synaptic apoptotic mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.