Abstract
The development of effective targeted therapies for the treatment of basal-like breast cancers remains challenging. Here, we demonstrate that cellular stress engendered by BET inhibition induces an adaptive response leading to MCL1 protein-driven evasion of apoptosis in breast cancers. Consequently, co-targeting MCL1 and BET is highly synergistic in in vitro and in vivo breast cancer models. The mechanism of adaptive response to BET inhibition involves upregulation of critical lipid metabolism enzymes including the rate-limiting enzyme stearoyl-CoA desaturase (SCD). Changes in the lipid metabolism are associated with increases in cell motility and membrane fluidity as well as transitions in cell morphology. The structural changes in the cell membrane leads to re-localization and activation of HER2/EGFR which can be interdicted by inhibiting SCD activity. Active HER2/EGFR, in turn, induces accumulation of MCL1 protein and therapeutic vulnerability to MCL1 inhibitors. The BET protein, lipid metabolism and receptor tyrosine kinase activation cascade is observed in patient cohorts of basal-like and HER2-amplified breast cancers. Drug response and genomics analyses revealed that MCL1 copy number alterations, including low-level gains, are selectively enriched in basal-like breast cancers and associated with effective BET and MCL1 co-targeting. The high frequency of MCL1 chromosomal amplifications (>30%) and gains (>50%) in basal-like breast cancers suggests that BET and MCL1 co-inhibition may have therapeutic utility in this aggressive subtype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.