Abstract

In this article, we prove integration by parts formulae (IbPFs) for the laws of Bessel bridges from 0 to 0 over the interval [0, 1] of dimension smaller than 3. As an application, we construct a weak version of a stochastic PDE having the law of a one-dimensional Bessel bridge (i.e. the law of a reflected Brownian bridge) as reversible measure, the dimension 1 being particularly relevant in view of applications to scaling limits of dynamical critical pinning models. We also exploit the IbPFs to conjecture the structure of the stochastic PDEs associated with Bessel bridges of all dimensions smaller than 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.