Abstract

We study supersymmetric deformations of N = 4 quantum mechanics with a Kahler target space admitting a holomorphic isometry. We show that the twisted mass deformation generalises to a deformation constructed from matrix-valued functions of the moment map, which obey the Nahm equations. We also explain how N = 4 supersymmetry implies that the Berry connection on the vacuum bundle for this theory satisfies the BPS monopole equations. In the case where the target space is a Riemann sphere, our analysis reduces to the standard Nahm construction of monopoles. This generalises an earlier result by Sonner and Tong to the case of monopoles of magnetic charge greater than one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.