Abstract

There has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide low bit error rates (BER) along with information security. The aim of such activity is to steal or distort the information being conveyed. Optical Wireless Systems (basically Free Space Optic Systems, FSO) are no exception to this trend. Thus, there is an urgent necessity to design techniques that can secure privileged information against unauthorized eavesdroppers while simultaneously protecting information against channel-induced perturbations and errors. Conventional cryptographic techniques are not designed for protecting information integrity when data is being transferred over a harsh communication medium. Hence, a separate channel coding protocol is often necessary to achieve this goal. Our work indicates that the use of a suitable Chaotic Shift Keying (CSK) map combined with an appropriate Space-Time Code (STC) can allow both requirements to be met. In this paper, we have concentrated on investigating the error rate performance of chaotic-wireless optical communication links operating over atmospheric channel, where the turbulence-induced fading is described by the Gamma–Gamma and log–normal distributions. The main aim of the paper is to assess the feasibility of employing Space-Time Coded chaotic communications over Multiple Input Multiple Output (MIMO) communication channels. Our simulations indicate that the combination of the STC and tent map provides the best BER performance in addition to security when compared to the choice of other maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.