Abstract

The relationship between benzo(a)pyrene biodegradation and certain target biomolecules has been investigated. To regulate the degradation process, the associated metabolism network must be clarified. To this end, benzo(a)pyrene degradation, carbon substrate metabolism and exometabolomic mechanism of Bacillus thuringiensis were analyzed. Benzo(a)pyrene was degraded through hydroxylation catalyzed by cytochrome P450 hydroxylase. After the treatment of 0.5 mg L-1 of benzo(a)pyrene by 0.2 g L-1 of cells for 9 d, biosorption and degradation efficiencies were measured at approximately 90% and 80%, respectively. During this process, phospholipid synthesis, glycogen, asparagine, arginine, itaconate and xylose metabolism were significantly downregulated, while glycolysis, pentose phosphate pathway, citrate cycle, amino sugar and nucleotide sugar metabolism were significantly upregulated. These findings offer insight into the biotransformation regulation of polycyclic aromatic hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.