Abstract

BackgroundRecent studies suggest that increasing ocean acidification (OA) should have strong direct and indirect influences on marine invertebrates. While most theory and application for OA is based on relatively physically-stable oceanic ecological systems, less is known about the effects of acidification on nearshore and estuarine systems. Here, we investigated the structuring of a benthic infaunal community in a tropical estuarine system, along a steep salinity and pH gradient, arising largely from acid-sulphate groundwater inflows (Sungai Brunei Estuary, Borneo, July 2011- June 2012).ResultsPreliminary data indicate that sediment pore-water salinity (range: 8.07 - 29.6 psu) declined towards the mainland in correspondence with the above-sediment estuarine water salinity (range: 3.58 – 31.2 psu), whereas the pore-water pH (range: 6.47- 7.72) was generally lower and less variable than the estuarine water pH (range: 5.78- 8.3), along the estuary. Of the thirty six species (taxa) recorded, the polychaetes Neanthes sp., Onuphis conchylega, Nereididae sp. and the amphipod Corophiidae sp., were numerically dominant. Calcified microcrustaceans (e.g., Cyclopoida sp. and Corophiidae sp.) were abundant at all stations and there was no clear distinction in distribution pattern along the estuarine between calcified and non-calcified groups. Species richness increased seawards, though abundance (density) showed no distinct directional trend. Diversity indices were generally positively correlated (Spearman’s rank correlation) with salinity and pH (p <0.05) and negatively with clay and organic matter, except for evenness values (p >0.05). Three faunistic assemblages were distinguished: (1) nereid-cyclopoid-sabellid, (2) corophiid-capitellid and (3) onuphid- nereid-capitellid. These respectively associated with lower salinity/pH and a muddy bottom, low salinity/pH and a sandy bottom, and high salinity/pH and a sandy bottom. However, CCA suggested that species distribution and community structuring is more strongly influenced by sediment particle characteristics than by the chemical properties of the water (pH and salinity).ConclusionsInfaunal estuarine communities, which are typically adapted to survive relatively acidic conditions, may be less exposed, less sensitive, and less vulnerable than epibenthic or pelagic communities to further acidification of above-sediment waters. These data question the extent to which all marine infaunal communities, including oceanic communities, are likely to be affected by future global CO2-driven acidification.

Highlights

  • Recent studies suggest that increasing ocean acidification (OA) should have strong direct and indirect influences on marine invertebrates

  • Given the fact that physical stressors are likely to increase with reductions in salinity and pH of estuarine waters, we investigated whether communities in regions occupying low salinity/high acidity are characterized by relatively lowered abundance and diversity, in the case of benthic infauna communities of acidified estuarine systems

  • Pore-water salinity was generally greater than the above-sediment water salinity, though these were well linearly related (Figure 1A)

Read more

Summary

Introduction

Recent studies suggest that increasing ocean acidification (OA) should have strong direct and indirect influences on marine invertebrates. Many tropical and subtropical estuaries experience acidification (low pH) resulting from acid sulfate soil (ASS) inflows [1,2,3,4,5]. Toxic metals in the estuarine sediment can be resuspended in the water columns which have indirect detrimental impacts on many organisms. Less information is available for non or weakly calcified organisms (crustaceans, polychaetes) and for community level responses in general for extraordinarily acidified tropical estuaries [3,4,5]. The timeframes for exposure to ASS groundwater runoff in estuarine systems are unclear, but exposure could last for decades or hundreds of years, allowing assessment of multi-generational impacts of low pH on biological systems [3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.