Abstract

Benign breast tumors are a nonthreatening condition defined as abnormal cell growth within the breast without the ability to invade nearby tissue. However, benign lesions hold valuable biological information that can lead us toward better understanding of tumor biology. In this study, we have used two pathway analysis algorithms, Pathifier and gene set variation analysis (GSVA), to identify biological differences between normal breast tissue, benign tumors and malignant tumors in our clinical dataset. Our results revealed that one-third of all pathways that were significantly different between benign and malignant tumors were immune-related pathways, and 227 of them were validated by both methods and in the METABRIC dataset. Furthermore, five of these pathways (all including genes involved in cytokine and interferon signaling) were related to overall survival in cancer patients in both datasets. The cellular moieties that contribute to immune differences in malignant and benign tumors were analyzed using the deconvolution tool, CIBERSORT. The results showed that levels of some immune cells were specifically higher in benign than in malignant tumors, and this was especially the case for resting dendritic cells and follicular T-helper cells. Understanding the distinct immune profiles of benign and malignant breast tumors may aid in developing noninvasive diagnostic methods to differentiate between them in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.