Abstract
Object detection algorithms have reached nearly superhuman levels within the last decade; however, these algorithms require large diverse training data sets to ensure their operational performance matches performance demonstrated during testing. The collection and human labeling of such data sets can be expensive and, in some cases, such as Intelligence, Surveillance and Reconnaissance of rare events it may not even be feasible. This research proposes a novel method for creating additional variability within the training data set by utilizing multiple models of generative adversarial networks producing both high- and low-quality synthetic images of vehicles and inserting those images alongside images of real vehicles into real backgrounds. This research demonstrates a 17.90% increase in mean absolute percentage error, on average, compared to the YOLOv4-Tiny Model trained on the original non-augmented training set as well as a 14.44% average improvement in the average intersection over union rate. In addition, our research adds to a small, but growing, body of literature indicating that the inclusion of low-quality images into training data sets is beneficial to the performance of computer vision models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.