Abstract

Physical and cognitive declines are significant risk factors for falls. Promising evidence suggests that combined physical-cognitive training would be an effective fall risk reduction and cognitive improvement intervention. However, a limited number of studies have been conducted and findings have been inconclusive. This study investigated the effects of interactive physical-cognitive game-based training on the fall risk and cognitive performance of older adults. Forty participants were randomly allocated to the intervention (n = 20) and control (n = 20) groups. Participants in the intervention group performed a 1 h session, 3 times a week for 12 weeks of the interactive physical-cognitive game-based training program. Fall risk (Physiological Profile Assessment, PPA; and Timed Up and Go, TUG) and cognitive outcome (Montreal Cognitive Assessment, MoCA) were assessed at pre- and post-intervention. Thirty-nine participants (mean age = 69.81 ± 3.78 years) completed the study (97.5%). At the end of the trial, participants in the intervention group demonstrated significant improvement in the PPA fall risk score (p = 0.015), postural sway (p = 0.005), MoCA score (p = 0.001), and TUG-dual task (p = 0.045) compared to controls. In conclusion, the interactive physical-cognitive, game-based training was effective in reducing physiological fall risk and improving cognitive function in community-dwelling older adults.

Highlights

  • One-third of community-dwelling older adults aged over 65 years suffer a fall each year and the rate of falls increases with age [1]

  • This study aimed to evaluate the effects of an interactive physical-cognitive game-based training program on fall risk and cognitive function of older adults

  • Findings from this study demonstrated that the 12 week-combined physical-cognitive training program decreased fall risk and improved cognitive performance

Read more

Summary

Introduction

One-third of community-dwelling older adults aged over 65 years suffer a fall each year and the rate of falls increases with age [1]. Declines in cognitive function including executive function, attention, memory, visuospatial ability, and processing speed are associated with an increase in fall risk and rates of falling [5,6]. The current body of evidence on the significant role of cognition on balance, gait, and falls suggests that adding a cognitive component to physical exercise may potentially enhance the efficacy of the exercise program for fall prevention [5]. In line with this proposition, Int. J. Public Health 2020, 17, 6079; doi:10.3390/ijerph17176079 www.mdpi.com/journal/ijerph

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.