Abstract

We propose a highly sensitive bending sensor based on the intermodal interference properties of a strongly coupled two-dimentional waveguide array fiber (WAF). The interference resonance peaks formed by the SMF-WAF-SMF Mach-Zehnder interferometer are intrinsically the result of interference between the LP(01)-like supermode and other higher order supermodes, displaying supernormal sensitivity to bending in a wide curvature range. The bending sensitivity of the intermodal MZI is a quadratic function of curvature, and the resonance wavelength shift is up to 100 nm within a curvature range 0-10 m(-1). The fabrication reveals briefness, and temperature response shows little impact on the bend sensing precision. The high bending sensitivity and wide sensing range can make this device a candidate for bending discrimination and measurement in widespread areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.