Abstract

Test bends of L415M hot induction bend of 508 mm OD×14.3 mm WT used in –45°C areas were conducted. The bending and tempering process parameters were designed, the influences of bending and tempering process parameters on impact toughness at –45°C and microstructure of tangent weld and bend weld were investigated. Hot induction bend was produced by the process of local induction heating+fast water quenching. After tempering treatment, the weld contained martensite-austenite (M-A) islands, carbide precipitations, welded column crystal structure and little pearlite (P), and the brittle fracture surface contained S segregation, the temper brittleness of the weld occurred, which lead to impact energy of bend weld to be lower than 40 J at –45°C. Without post-bending tempering treatment, the microstructures of bend weld was a composite of polygonal ferrite (PF) and granular bainite (GB) with small size and uniform distribution, the coarse column structure and acicular ferrite (AF) disappeared in the weld, so the impact energy of bend weld was higher than 70 J at –45°C, but the impact energy of tangent weld was very poor. It suggests that the process of overall induction of heating + fast water quenching + no tempering treatment is more reasonable, the process ensures that the impact toughness at –45°C, strength and other properties of bend meet the requirements of CDP-S-OGP-PL-016-2011-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.