Abstract
Bendable single crystal silicon nanomembrane thin film transistors (SiNMs TFTs), employing a simple method which can improve the metal/n-Silicon (Si) contact characteristics by inserting the titanium dioxide (TiO2) interlayer deposited by atomic layer deposition (ALD) at a low temperature (90 °C), are fabricated on ITO/PET flexible substrates. Current-voltage characteristics of titanium (Ti)/insertion layer (IL)/n-Si structures demonstrates that they are typically ohmic contacts. X-ray photoelectron spectroscopy (XPS) results determines that TiO2 is oxygen-vacancies rich, which may dope TiO2 and contribute to a lower resistance. By inserting TiO2 between Ti and n-Si, Ids of bendable single crystal SiNMs TFTs increases 3–10 times than those without the TiO2 insertion layer. The fabricated bendable devices show superior flexible properties. The TFTs, whose electrical properties keeps almost unchanged in 800 cycles bending with a bending radius of 0.75 cm, obtains the durability in bending test. All of the results confirm that it is a promising method to insert the TiO2 interlayer for improving the Metal/n-Si ohmic contact in fabrication of bendable single crystal SiNMs TFTs.
Highlights
Flexible electronics is an important development direction in the field of future electronics
Scientists can use flexible materials to fabricate advanced electronic devices, such as transistor arrays for optional folding and stretching, bendable flexible screens, or some sensors which can be integrated on the clothing [1,2,3,4,5,6,7,8,9]
Organic-based semiconductors suffer from poor device performance due to their low carrier mobility and their chemical/thermal instability
Summary
Flexible electronics is an important development direction in the field of future electronics. On the basis of the works above, we reports a simple method that using ALD technology deposits TiO2 at a low temperature of 90 ◦C to further improve the contact between the source/drain regions and metal electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.