Abstract

High-performing electrocatalysts of oxygen evolution reaction (OER) are essential for various clean energy devices. Due to their excellent OER performance, transition metal layered doubled hydroxides (LDHs) attract increasing interest. Herein, a systematic study of superfast single-step synthesis for a series of carbon-free, binder-free self-supported bimetallic hydroxides on Ni foam (NF) and their associated performance towards OER in alkaline electrolytes is presented. Transition metal hydroxides are directly deposited on NF by a superfast electrodeposition technique. The resultant bimetallic hydroxides are uniformly distributed over NF in short-range order crystalline or amorphous structures. All six electrodes demonstrate significantly greater OER activities than ruthenium oxide (RuO2). The interaction between transition metal LDHs and NF determines OER performance. Applying optimum conditions, the highest activities are accomplished. Overall, results show excellent OER performance. The fast electrodeposition technique provides a systematic and cost-effective way to achieve durable self-supported transition metal LDH structures showing excellent OER performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.