Abstract

Diamond, renowned for its exceptional semiconducting properties, stands out as a promising material for high-performance power electronics, optics, quantum, and biosensing technologies. This study methodically investigates the optimization of polycrystalline diamond (PCD) substrate surfaces through Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE). Various parameters, including gaseous species, flow rate, coil power, and bias power were tuned to understand their impact on surface morphology and chemistry. A thorough characterization, encompassing chemical, spectroscopic, and microscopic methods, shed light on the effects of different ICP-RIE conditions on surface properties. CF4/O2 plasma emerged as a viable treatment for achieving smooth PCD surfaces with minimal etch pit formation. Most notably, surface fluorination, a critical aspect of increasing chemical and thermal stability, was successfully accomplished using CF4, SF6, and other F-containing plasmas. The fluorine concentration and surface chemistry variations were studied, with high resolution X-ray Photoelectron Spectroscopy unveiling differences amongst the sp2 C phase, sp3 C phase, C–O, CO, and C–F bonds. Time-of-flight secondary Ion Mass Spectrometry (ToF-SIMS) and depth-profile analysis unveiled a consistent surface fluorination pattern with CF4/O2 treatment. Furthermore, contact angle measurements showcased heightened hydrophobicity. This study provides valuable insights into precise diamond surface engineering, important for the development of future diamond-based semiconductor technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.