Abstract

Atomic properties of n=3 states of the W56+ - W61+ ions are systematically investigated through two state-of-the-art methods, namely, the second-order many-body perturbation theory, and the multi-configuration Dirac–Hartree–Fock method combined with the relativistic configuration interaction approach. The contributions of valence-valence and core-valence electron correlations, the Breit interaction, the higher-order retardation correction beyond the Breit interaction through the transverse photon interaction, and the quantum electrodynamical corrections to the excitation energies are studied in detail. The excitation energies and wavelengths obtained with the two methods agree with each other within ≈0.01%. The present results achieve spectroscopic accuracy and provide a benchmark test for various applications and other theoretical calculations of W56+ - W61+ ions. They will assist spectroscopists in their assignment and direct identification of observed lines in complex spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.