Abstract

Recent studies have shown that self-heating ignition is a possible cause of fires when Lithium-ion batteries (LIBs) are stacked in large numbers, for example, during storage. The understanding of this ignition type is limited, and most current studies are based on numerical modelling. The different modelling tools found in the literature differ in their assumptions, capabilities, and resources needed, and may provide significantly different predictions. This study presents a benchmarking between COMSOL Multiphysics, which is one of the most prevailing tools used in modelling thermal-electrochemical behaviour of LIBs, and Gpyro, which is widely used in modelling ignition of solid fuels. Four case studies are designed with increasing levels of complexity: (1) just chemical kinetics at the microscale, (2) just heat transfer at the mesoscale, (3) self-heating behaviour at the mesoscale for coupled chemical reactions and heat transfer of a single cell, and (4) four-cell ensemble for multiphysics at a larger scale. The results of scenarios #3 and #4 are also compared to experiments. The results show that although COMSOL and Gpyro have significant differences in their assumptions and resources needed, both tools can accurately predict the critical conditions for ignition for self-heating, which validates their use to study the safety of LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.