Abstract
Linear particle transport in stochastic media is key to such relevant applications as neutron diffusion in randomly mixed immiscible materials, light propagation through engineered optical materials, and inertial confinement fusion, only to name a few. We extend the pioneering work by Adams, Larsen and Pomraning [1] (recently revisited by Brantley [2]) by considering a series of benchmark configurations for mono-energetic and isotropic transport through Markov binary mixtures in dimension d. The stochastic media are generated by resorting to Poisson random tessellations in 1d slab, 2d extruded, and full 3d geometry. For each realization, particle transport is performed by resorting to the Monte Carlo simulation. The distributions of the transmission and reflection coefficients on the free surfaces of the geometry are subsequently estimated, and the average values over the ensemble of realizations are computed. Reference solutions for the benchmark have never been provided before for two- and three-dimensional Poisson tessellations, and the results presented in this paper might thus be useful in order to validate fast but approximated models for particle transport in Markov stochastic media, such as the celebrated Chord Length Sampling algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.