Abstract
With high-determinacy and no subsurface damage, Magnetorheological Finishing (MRF) has become an important tool in fabricating high-precision optics. But for large mirrors, the application of MRF is restricted by its small removal function and low material removal rate. In order to improve the material removal rate, shorten the processing cycle, we proposed a new MRF concept, named Belt-MRF to expand the application of MRF to large mirrors and made a prototype with a large remove function, using a belt instead of a very large polishing wheel to expand the polishing length. A series of experimental results on Silicon carbide (SiC) and BK 7 specimens and fabrication simulation verified that the Belt-MRF has high material removal rates, stable removal function and high convergence efficiency which makes it a promising technology for processing large aperture optical elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.