Abstract

We study the Bell's inequality violation by dynamical Casimir radiation with pseudospin measurement. We consider a circuit quantum electrodynamical set-up where a relativistically moving mirror is simulated by variable external magnetic flux in a SQUID terminating a superconducting-microwave waveguide. We analytically obtain expectation values of the Bell operator optimized with respect to channel orientations, in terms of the system parameters. We consider the effects of local noise in the microwave field modes, asymmetry between the field modes resulting from nonzero detuning, and signal loss. Our analysis provides ranges of the above experimental parameters for which Bell violation can be observed. We show that Bell violation can be observed in this set-up up to 40 mK temperature as well as up to 65 % signal loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.