Abstract
AbstractLet U/ℂ be a smooth quasi-projective variety of dimension d, CHr (U,m) Bloch's higher Chow group, andclr,m: CHr (U,m) ⊗ ℚ → homMHS (ℚ(0), H2r−m (U, ℚ(r)))the cycle class map. Beilinson once conjectured clr,m to be surjective [Be]; however, Jannsen was the first to find a counterexample in the case m = 1 [Ja1]. In this paper we study the image of clr,m in more detail (as well as at the “generic point” of U) in terms of kernels of Abel-Jacobi mappings. When r = m, we deduce from the Bloch-Kato conjecture (now a theorem) various results, in particular that the cokernel of clm,m at the generic point is the same for integral or rational coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.