Abstract
ABSTRACTAn experimental investigation is carried out to determine the trajectory, spread, dilution and cross-sectional flow structures of non-buoyant oblique jets released in a moving ambient, covering initial discharge angles from 10 to 90°. For each angle, measurements of the side view and plan view integrated concentration fields are obtained. The double-Gaussian assumption is used to characterize the cross-sectional concentration profiles, which gradually change from the axi-symmetric Gaussian of the weak-jet region to the double-vortex pair structure of the momentum puff region. In the weakly-advected region, the spread is similar to that of the jet in a stagnant ambient, while in the strongly-advected region a new spread relationship is obtained based on the double-Gaussian assumption. The spread relationships are used in an existing integral model, resulting in predictions for the trajectory and dilution that are a good match for the experimental data in the weakly- and strongly-advected regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.