Abstract
This paper studies the optimal investment problem for a behavioral investor with probability distortion functions and an S-shaped utility function whose utility on gains satisfies the Inada condition at infinity, albeit not necessarily at zero, in a complete continuous-time financial market model. In particular, a piecewise utility function with hyperbolic absolute risk aversion (HARA) is applied. The considered behavioral framework, Cumulative Prospect Theory (CPT), was originally introduced by Tversky and Kahneman (1992). The utility model allows for increasing, constant or decreasing relative risk aversion. The continuous-time portfolio selection problem under the S-shaped HARA utility function in combination with probability distortion functions on gains and losses is solved theoretically for the first time, the optimal terminal wealth and its replicating wealth process and investment strategy are stated. In addition, conditions on the utility and the probability distortion functions for well-posedness and closed-form solutions are provided. A specific probability distortion function family is presented which fulfills all those requirements. This generalizes the work by Jin and Zhou (2008). Finally, a numerical case study is carried out to illustrate the impact of the utility function and the probability distortion functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.