Abstract
We have formed noncovalent inclusion compounds (ICs) between guest poly(ε-caprolactone) (PCL) chains, with molecular weights ranging from ∼2000 to 80 000 g/mol, and host urea (U). Upon careful removal of the U host, each of the guest PCL chains were coalesced from their U-IC crystals to produce coalesced samples (c-PCLs). As previously observed for PCL and other polymer guests when coalesced from their ICs formed with host cyclodextrins (CDs), upon cooling from their melts, PCLs coalesced from their U-ICs also show enhanced abilities to crystallize, regardless of their molecular weight. Also consistent with polymer guests, including PCL, that were coalesced from their CD-ICs, c-PCLs obtained from their U-ICs retain their enhanced abilities to crystallize even after spending long times (weeks or more) in the melt. Because, unlike CD hosts, U does not thread over guest polymer chains in their ICs, we conclude that the enhanced ability of c-PCLs to crystallize from their melts upon removal of either host from their ICs is solely a consequence of their coalesced conformations/structures/morphologies, which are stable to prolonged melt-annealing. Furthermore, because c-PCLs with chain lengths well below and well above those corresponding to the entanglement molecular weight of PCL behave similarly, we conclude that their enhanced ability to crystallize from the melt is likely an exclusive consequence of the extended and unentangled arrangement of their coalesced chains. In addition, c-PCLs obtained from their U-ICs are observed to effectively act as self-nucleants, when added in small amounts to as-received PCLs, to produce nuc-PCLs, which like neat c-PCLs exhibit an enhanced ability to melt-crystallize.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.