Abstract
We study the behavior of a heuristic for solving random satisfiability problems by stochastic local search near the satisfiability threshold. The heuristic for average satisfiability (ASAT), is similar to the Focused Metropolis Search heuristic, and shares the property of being focused, i.e., only variables in unsatisfied clauses are updated in each step. It is significantly simpler than the benchmark WALKSAT heuristic. We show that ASAT solves instances as large as N=10(6) in linear time, on average, up to a ratio of 4.21 clauses per variable in random three-satisfiability. For K higher than 3, ASAT appears to solve instances of K -satisfiability up to the Montanari-Ricci-Tersenghi-Parisi full replica symmetry breaking (FSRB) threshold denoted alpha(s)(K) in linear time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.