Abstract

AbstractUnderstanding dynamic systems is a crucial step toward the design of complex matter. Here, we aim to study the behavior of Constitutional Dynamic Networks (CDNs) in conditions of dynamic competition, taking cryptands and metal cations as a test bed. The CDNs of cryptates were analyzed by NMR spectroscopy. The experimental results were complemented by extensive numerical simulations, based on a large amount of thermodynamic and kinetic data available in the literature for cryptates. Although the CDN′s output is a result of the interplay between the individual stability constants of the complexes in a mixture, the overall effect may be governed by only one – the most thermodynamically stable member of a network. Significantly, these findings indicate that an increase in complexity (multiplicity and connectivity) of a system may, in conditions of dynamic competition, result in “simplexity”, i. e. a simplification of the output of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.